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Abstract

The c-KIT proto-oncogene has been implicated in the

pathogenesis of several neoplastic diseases, including

gastrointestinal stromal tumors and mastocytosis in

humans, and mast cell tumors (MCTs) in canines. Cuta-

neous MCTs are common neoplasms in dogs and have

a variable biologic behavior. The goal of this study

was to define the prognostic significance of c-KITmuta-

tions identified in canine MCTs and the associations

between c-KIT mutations, KIT localization, and KIT ex-

pression levels. Microdissection and polymerase chain

reaction were performed on 60 MCTs to identify c-KIT

mutations. Anti-KIT antibodies were used for immuno-

histochemical evaluation of KIT localization. Forty-two

MCTs were included in a tissue microarray, and KIT

expression was quantified using immunofluorescence.

Canine MCTs with c-KIT mutations were significantly

associated with an increased incidence of recurrent

disease and death. c-KIT mutations were also signifi-

cantly associated with aberrant protein localization;

however, the level of KIT expression did not correlate

with either c-KIT mutations or changes in protein lo-

calization. Considering the high prevalence of canine

MCTs and the central role of c-KIT in the tumorigenesis

of certain tumors, canine MCTs are an excellent model

for characterizing the role of c-KIT in neoplastic

diseases and is a potential target for novel therapeutic

agents in clinical trials.
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Introduction

The c-KIT proto-oncogene encodes the receptor tyrosine

kinase KIT, which consists of an extracellular ligand bind-

ing domain composed of five immunoglobulin-like loops, a

transmembrane domain, a negative regulatory juxtamem-

brane domain, and a split cytoplasmic kinase domain [1–3].

The ligand for KIT is stem cell factor, which is also known as

steel factor, KIT ligand, or mast cell growth factor [4–7]. The

receptor tyrosine kinase KIT is expressed by multiple cell types,

including hematopoietic progenitor cells, germ cells, interstitial

cells of Cajal, melanocytes, and mast cells, where it has been

associated with cell survival, proliferation, and differentiation

[8–14]. In addition to these functions, in mast cells, KIT has

been shown to be important for fibronectin adhesion, chemo-

taxis, and degranulation [5,15–19].

Recently, c-KIT has been implicated in the pathogenesis

of multiple human neoplastic diseases. c-KIT mutations, which

lead to a constitutively activated KIT product in the absence

of ligand, have been identified in the juxtamembrane domain

of gastrointestinal stromal tumors in humans [20] and in the

kinase domain at codon 816 of human mastocytosis patients

[21–23]. Additionally, aberrant KIT expression is increasingly

being identified in multiple neoplasms, including small cell lung

cancer, prostate cancer, and acute myeloblastic leukemia

[24–29]. The significance of this aberrant expression has been

determined for some of these cancers, such as small cell lung

cancer, where autocrine and paracrine signaling loops have

been identified [24,26], and in prostate cancer, where trun-

cated isoforms of KIT that signal through phospholipase C-g1

have been characterized [27,30]. However, for several other

cancers, the significance of this aberrant expression has not

been elucidated.

Activating c-KIT mutations [31–34] and aberrant KIT ex-

pression has also been described in canine cutaneous mast

cell tumors (MCTs) [35–39], therefore implicating c-KIT in their

pathogenesis. Unlike mastocytosis in humans, which is a rather
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rare condition and usually has a positive prognosis [40–42],

canine cutaneous MCTs are one of the most common neo-

plastic diseases in dogs (accounting for 7–21% of all cuta-

neous neoplasms) [43–46] and have an extremely variable

biologic behavior ranging from a benign mass to a fatal me-

tastatic disease [34,47,48]. Canine cutaneous MCTs com-

monly present as a solitary neoplastic mass in the skin and/or

subcutaneous tissue of older dogs, with mean age of onset of

approximately 9 years of age. There is no reported sex pre-

dilection [49,50]. All breeds of dogs are affected by MCTs,

but several breeds, such as the boxer, Boston terrier, bull-

dog, Weimaraner, and Labrador retriever, have been sug-

gested to have an increased incidence of the disease

[45,51]. Prognostic and therapeutic determinations for ca-

nine cutaneous MCTs are commonly based on histologic

grading. Several histologic grading systems have been

developed for the evaluation of canine cutaneous MCTs

[47,48]. The most commonly used system is that proposed

by Patnaik et al. [48], which defines grade 1 MCTs as being

well-differentiated tumors with good prognosis, grade 3

MCTs as being poorly differentiated tumors with poor prog-

nosis, and grade 2 MCTs as being of intermediate differ-

entiation with intermediate prognosis.

c-KIT mutations have been identified in the juxtamem-

brane domain, primarily in exon 11, of canine MCTs and

consist of internal tandem duplications (ITDs) and deletions

[31–34,52–55]. ITD c-KIT mutations were identified in 9%

of canineMCTs in one study that looked at themutation status

of 88 randomly selected MCTs [33], but these mutations

may occur in as many as 30% to 50% of all intermediate- to

high-grade MCTs [53]. All, except for one, of the previously

described ITDs are in-frame duplications that range from

approximately 39 to 69 bp in size [31–34,53–55], and all of

the mutations that have been characterized thus far pro-

duce a constitutively activated form of KIT in the absence of

ligand [31,32,54]. Previous work by our laboratory has

shown that c-KIT mutations are significantly associated with

histologically higher-grade canine MCTs [33]. Recently, our

laboratory has also shown that increased cytoplasmic locali-

zation of KIT in canine MCTs is significantly associated with

a decreased survival duration and disease-free interval as

compared to MCTs with perimembrane KIT localization [39].

The goal of this study was to define the prognostic sig-

nificance of c-KIT mutations, and the associations between

c-KIT mutations, KIT localization, and KIT expression levels

in canine MCTs. Mutations in c-KIT ’s juxtamembrane do-

main were identified in 15% of the MCTs examined, using

laser capture microdissection (LCM) and polymerase chain

reaction (PCR) amplification. This is the first study to show

that c-KIT mutations in canine MCTs are significantly asso-

ciated with decreased disease-free and overall survival, and

that a significant relationship between KIT protein localiza-

tion and the presence of c-KIT mutations exists in canine

MCTs. These data clearly implicate an important role of c-KIT

in the progression of canine cutaneous MCTs. Considering

the high prevalence of MCTs in dogs and the central role

c-KIT appears to play in the tumorigenesis of many canine

MCTs, canine cutaneous MCTs provide an excellent spon-

taneous in vivo model for studying the molecular biology of

c-KIT in human and animal neoplastic diseases. Further-

more, canine cutaneous MCTs are an excellent model for

the treatment of cancers that are driven by c-KIT and can be

used in clinical trials for testing chemotherapeutics aimed at

targeting the c-KIT proto-oncogene.

Materials and Methods

Case Selection, Tissue Samples, and Survival Data

Sixty canine cutaneous MCTs from 60 different dogs

submitted to the Michigan State University’s Diagnostic

Center for Population and Animal Health between 1998 and

2001 were included in this study. Cases were included in this

study solely based on the meeting of all inclusion criteria.

Inclusion criteria for this study were as follows: 1) all cases

were previously diagnosed as canine cutaneous MCT (the

diagnosis of canine cutaneous MCTand the histologic grade

of each tumor were confirmed by a veterinary pathologist);

2) all cases were treated with surgical excision as the only

primary treatment modality (i.e., no chemotherapy or radia-

tion therapy was used); 3) complete follow-up data from the

referring veterinarian were available; and 4) adequate for-

malin-fixed paraffin-embedded tissues for DNA extraction

and immunohistochemistry were available. Complete follow-

up data for each case included age, sex, breed, weight,

number of masses, location of mass, time before excision,

medication at the time of surgery, diagnostic tests per-

formed, recurrence, tumor margins, metastasis, survival

time, and cause of death. Histologic grading of canine MCTs

was performed in conjunction with a multi-institutional review

of the current histologic grading system for canine cutaneous

MCTs, in which 31 pathologists participated in the histologic

grading of 95 canine MCTs [56]. Histologic grades represent

a consensus of those results.

LCM and DNA Extraction

LCM was used to isolate neoplastic mast cells for DNA

extraction and subsequent PCR amplification of c-KIT exon

11 and intron 11 to identify ITD c-KITmutations. Five- to 7-mm
sections of each formalin-fixed paraffin-embedded MCT

were dehydrated and stained with hematoxylin for LCM. A

total of 2000 to 4000 neoplastic mast cells was extracted from

each tumor sample using the Pixcell LCM system with Macro

LCM caps (Arcturus, Mountain View, CA) (Figure 1). Ex-

tracted cells that adhered to the Macro LCM caps were incu-

bated overnight in 50 ml of DNA extraction buffer (10 mM Tris,

pH 8.0, 1 mM EDTA, and 1% Tween) and 1.5 ml of 15 mg/ml

Proteinase K (Roche, Indianapolis, IN) at 37jC. Samples

were centrifuged at 4000 rpm for 5minutes, and Proteinase K

was inactivated by heating at 95jC for 8 minutes.

PCR Amplification of c-KIT Exon 11 and Intron 11

PCR amplification was performed using a previously de-

scribed primer pair that flanks exon 11 and the 5V end of intron

11 [55], which includes the previously described ITD region of

the c-KIT proto-oncogene in canine MCTs [31–34,53–55].
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PCRs were prepared in a 25-ml total reaction volume, with

5 ml of LCM-extracted DNA, 5 pmol of each primer, 0.5 U of

Taq polymerase (Invitrogen, Carlsbad, CA), and final con-

centrations of 80 mM deoxynucleoside triphosphate, 2 mM

MgCl2, 20 mM Tris–HCl, and 50 ml of KCl. Cycling conditions

were as follows: 94jC for 4 minutes; 35 to 45 cycles at 94jC
for 1 minute, 55jC for 1 minute, and 72jC for 1 minute; 72jC
for 5 minutes. Amplified products and ITD mutations were

visualized by agarose gel electrophoresis on a 2% agarose

gel after ethidium bromide staining (Figure 2).

DNA Sequencing

Mutant c-KIT alleles were identified by agarose gel elec-

trophoresis, and DNA fragments were excised for DNA purifi-

cation. DNA was purified using the Qiaex II gel purification kit

(Qiagen, Valencia, CA) according to the manufacturer’s

protocol. DNA fragments were subcloned into Topo vectors

using the Topo cloning kit (Invitrogen) and were subse-

quently chemically transformed into competent Escherichia

coli cells according to the manufacturer’s protocol. c-KIT

clones were sequenced either through an automated se-

quencing technique using fluorescently labeled dideoxynu-

cleotides with capillary electrophoresis and detection using

an ABI sequence analyzer (Foster City, CA) at Michigan

State University’s Genomics Technology Support Facility, or

by manually sequencing with a Thermo Sequenase Radio-

labeled Terminator Cycle Sequencing kit (USB Corporation,

Cleveland, OH) and 33P-labeled dideoxynucleotide triphos-

phates according to the manufacturer’s protocol, followed

by 48 to 72 hours of exposure to Biomax MR Scientific Imag-

ing Film (Kodak, Rochester, NY).

Immunohistochemistry

Tissue sections of canine cutaneous MCTs were used for

the immunohistochemical evaluation of KIT protein locali-

zation, as previously described [39]. In brief, 5-mm sections of

formalin-fixed paraffin-embedded tissue were deparaffinized

in xylene, rehydrated in graded ethanol, and rinsed in dis-

tilled water. Endogenous peroxidase was neutralized with

3% hydrogen peroxide for 5 minutes. Antigen retrieval was

achieved by incubating slides in a citric buffer antigen re-

trieval solution (Dako, Carpinteria, CA) in a steamer (Black

and Decker, Towson, MD) for 20 minutes, and nonspecific

immunoglobulin binding was blocked by incubation of slides

for 10 minutes with a protein-blocking agent (Dako). Using

an autostainer, slides were incubated for 30 minutes with

a rabbit anti–human c-KIT antibody (Dako) at a dilution of

1:100. A streptavidin immunoperoxidase staining procedure

(Dako) was used for immunolabeling. The immunoreaction

was visualized with 3,3V-diaminobenzidine substrate (Dako).

Sections were counterstained with Mayer’s hematoxylin.

Positive and negative immunohistochemical controls were

included in each run. Known canine MCTs were used as

positive controls. Negative controls were canine MCTs that

were treated identically as routine sections, except that the

30-minute incubation with primary antibodies was replaced

with a 30-minute incubation with the buffer. KIT staining

patterns and protein localization for each MCT were charac-

terized as being perimembrane (KIT staining pattern I), focal

or stippled cytoplasmic (KIT staining pattern II), or diffuse

cytoplasmic protein localization (KIT staining pattern III), as

previously described [39] (Figure 3). The evaluation of KIT

Figure 1. LCM of neoplastic canine cutaneous MCTs (original magnification, �10). LCM was performed using archival formalin-fixed paraffin-embedded tissue

sections. DNA was extracted from captured cells, and PCR amplification was performed to identify c-KIT mutations. (A) Hematoxylin-stained section of MCT prior

to microdissection. (B) Section of MCT following microdissection. (C) Laser capture microdissected cells adhered to cap.

Figure 2. A 2% agarose gel of PCR-amplified c-KIT exon 11 and intron 11

from LCM-extracted DNA from canine MCTs. L: 100-bp ladder; M:

heterozygous for normal allele (191 bp) and mutant allele (250 bp), with an

upper band representing heterodimerization of normal and mutant alleles; N:

191-bp homozygous normal allele; NC: negative control (no template).
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protein localization was performed by a single investigator

(J.D.W.) to eliminate interobserver variability.

Tissue Microarray and Immunofluorescence

One-millimeter cores that were microscopically selected

to be representative of each tumor were taken from paraffin-

embedded MCT tissue blocks and were placed in a common

recipient paraffin block. MCTs included in the tissue array

were chosen based on the availability of tissues for transfer

to the recipient block. This resulted in 42 MCTsamples from

42 cases being represented on the tissue microarray. The

recipient block was subsequently heated at 37jC for ap-

proximately 1 hour to create a cohesive block. The Five-

Micron sections were cut and deparaffinized in xylene, and

subsequently dehydrated in graded alcohol with a final rinse

in distilled water. Twenty-minute steam retrieval in a citric

buffer solution (Dako) was used for antigen retrieval. Non-

specific antibody binding was performed with 5% donkey

serum with blocking buffer. Slides were incubated with pri-

mary rabbit anti–human c-KIT (Dako) antibodies at a dilution

of 1:100 overnight in a humidity chamber at 4jC. Sections
were then incubated with Cy-3– labeled secondary anti-

bodies, and nuclei were counterstained with 4V,6-diamidino-

2-phenylindole. Mean immunofluorescence was quantified

for each tumor sample using a Perkin Elmer Scan Array

(Perkin Elmer, Wellesley, MA).

Statistics

Univariable analyses. Before developing multivariable

models, each risk factor was evaluated for its association

with MCT outcomes. Univariable proportional hazards

models were developed for each risk factor for each outcome,

and the level of association was assessed through the risk

factors’ P value in the model. Risk factors with P V .20 were

considered for inclusion in the multivariable model, which

included the two variables c-KIT mutation status and KIT

staining pattern.

Multivariable logistic regression models. Logistic regres-

sion models were developed for the occurrence of out-

comes associated with MCTs, including recurrence of local

MCTs, recurrence of distant MCTs, and death associated

with MCTs. In addition to risk factors of interest, animal

signalment (age, sex, and weight) were included in the

multivariable model to account for their effects on model

outcome. Results were reported as odds ratio (OR): OR < 1

means that the likelihood of the occurrence of an event is

reduced, whereas OR > 1 indicates that the likelihood of an

event is increased.OR=1 indicates that the risk factor neither

increases or decreases the likelihood of the outcome.

Multivariable survival analysis models. This study used the

Cox proportional hazards models (SAS PROC PHREG)

(SAS Version 9.13; SAS Institute, Inc., Cary, NC) for survival

analysis, using survival times (time-to-event) as the model

outcome, and produced point estimates of the hazard ratio

(HR; risk ratio) for risk factors in the model. Proportional

hazards regression models were developed for the survival

analysis of different outcomes associated with MCTs. These

outcomes were days to recurrence of local MCTs, days to

recurrence of distant MCTs, and days to death resulting

from MCT. In addition to risk factors of interest, animal sig-

nalment (age, sex, and weight) was included in the multi-

variable model to account for their effects on model outcome.

The effects of risk factors on days to events were reported

as HRs. Comparable to OR, HR < 1 indicates that the risk

factor increases time to outcome, whereas HR > 1 indicates

that the risk factor decreases time to outcome.

Associations between c-KIT mutation status and KIT

staining patterns were tested using Mantel-Hanzel chi-

square analysis. Associations between c-KITmutation status

and mean immunofluorescence, and between KIT staining

patterns and mean immunofluorescence were tested using

Wilcoxon rank sum tests.

Results

Study Population

Sixty canine cutaneous MCTs from 60 dogs that met the

inclusion criteria were included in this study. The age of

these dogs ranged from 2 to 14 years, with a mean age of

7.84 years. Thirty-six dogs were females and 24 dogs were

males. A total of 19 different breeds was represented by the

study population. There were 13 mixed-breed dogs, 12 Lab-

rador retrievers, 10 boxers, 6 golden retrievers, 3 pugs,

Figure 3. Sections of canine cutaneous MCTs (skin) stained with anti-KIT antibodies and counterstained with hematoxylin (original magnification, �100, oil)

representing three patterns of KIT localization identified in neoplastic canine mast cells. (A) KIT staining pattern I, consisting of perimembrane protein localization.

(B) KIT staining pattern II, consisting of focal to stippled cytoplasmic staining. (C) KIT staining pattern III, consisting of diffuse cytoplasmic staining.
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2 bassett hounds, 2 springer spaniels, and 12 other breeds

represented by single dogs. According to the Patnaik histo-

logic grading system for canine MCTs [48], 8 MCTs were

grade 1, 45 MCTs were grade 2, and 7 MCTs were grade 3.

c-KIT Mutations in Canine MCTs

DNA fragments representing exon 11 of the c-KIT proto-

oncogene were amplified and visualized for each tumor.

c-KIT mutations were identified in 9 of 60 MCTs (15%). Mu-

tations in cases 1 to 8 were similar to previously described

ITD c-KIT mutations [30–33,52–54]. All of these ITD muta-

tions were in-frame mutations that ranged from 45 to 60 bp

in size. In cases 5, 6, 7, and 8, duplications extended by one,

two, three, and four nucleotides into intron 11, respectively.

The mutation in case 9 was located entirely in intron 11. This

mutation was tentatively identified as a duplication based

on its banding pattern on agarose gel electrophoresis, but,

when sequenced, it was found to consist of a 24-nucleotide

poly-T insertion followed by a 15-nucleotide duplication of

the sequence preceding the poly-T insertion. Additionally, a

G-to-A transition was found in the duplicated sequence

that preceded the poly-T insert. Four of the MCTs in which

mutations were identified were histologic grade 2 and five

were grade 3 (Table 1).

According to multivariable analysis, patients with MCTs

containing ITD c-KIT mutations had significantly decreased

survival times [P = .0068, HR = 6.23 (1.66–23.4)] and an

increased incidence of mortality due to MCT-related disease

[P = .0011, OR = 15 (2.95–76.31)] (Figure 4). Additionally,

patients with MCTs containing ITD c-KIT mutations were

also significantly associated with an increased incidence

of recurrence at the original tumor site [P = .0255, OR = 5.4

(1.23–23.75)] and at sites outside of the original tumor mar-

gins [P = .0016, OR = 6.13 (1.99–18.92)] and with a de-

creased disease-free interval both at the site of the original

tumor [P = .0157, HR = 5.78 (1.40–23.99)] and at sites out-

side of the tumormargin [P = .0012, HR= 6.14 (2.06–18.37)].

KIT Protein Localization and c-KIT Mutations

KIT protein localization was examined in each MCT using

immunohistochemical staining with anti-KIT antibodies.

Twenty-five of the 60 MCTs examined had KIT staining pat-

tern I, which is characterized by perimembrane KIT protein

localization, as seen in non-neoplastic (inflammatory) mast

cells. Twenty-four of 60 MCTs in this study had KIT staining

pattern II, which is characterized by stippled to focal cyto-

plasmic KIT localization, often with a decrease in perimem-

brane protein localization; the remaining 11 MCTs had KIT

staining pattern III, which is characterized by diffuse cyto-

plasmic KIT localization. Seven of nine MCTs (77.8%) with

ITD c-KIT mutations also had aberrant KIT protein localiza-

tion (KIT staining pattern II or III). Two of the MCTs with ITD

c-KIT mutations had KIT staining pattern I, three cases had

KITstaining pattern II, and four cases had KITstaining pattern

III. A significant trend was identified between the presence

of ITD c-KIT mutations and an increased cytoplasmic locali-

zation of KIT (P = .046) (Figure 5), as evidenced by higher KIT

staining patterns.

KIT Protein Expression

The tissue microarray representing 42 of 60 samples was

used to quantify KIT immunofluorescence. Relationships be-

tween immunofluorescence, and c-KIT mutations and KIT

Table 1. Mutation and Case Description for Cases with ITD c-KIT Mutations.

Case

Number

Duplication

Size

Duplication

Location

Histologic

Grade*

KIT Staining

Patterny
Local

Recurrence

(months)

Distant

Recurrence

(months)

MCT-Related

Death

(months)

Time to

Last Follow-Up

(If Alive) (months)

1 45 Exon 11 3 3 None None 0.5 N/A

2 45 Exon 11 2 2 None None None 29.1

3 45 Exon 11 3 3 None 0.5 0.5 N/A

4 45 Exon 11 2 2 0.5 0.5 0.5 N/A

5 60 Exon 11/intron 11 3 2 1 1 1 N/A

6 54 Exon 11/intron 11 3 3 2 2 3 N/A

7 60 Exon 11/intron 11 3 3 None 0.6 0.6 N/A

8 57 Exon 11/intron 11 2 1 None None None 7.3z

9 15 Intron 11§ 2 1 None None None 20.4

*Histologic grading was performed based on the Patnaik histologic grading system for canine cutaneous MCTs [48].
yKIT staining patterns were classified as described by Webster et al. [39].
zDog 8 died at 7.3 months due to causes unrelated to mast cell disease.
§Mutation in dog 9 consisted of a 24-bp poly-T insert with a 15-bp duplication, which was located entirely in intron 11. An additional A-to-G transition was also

identified in the duplicated sequence preceding the poly-T insert.

Figure 4. Kaplan-Meier survival curve: relative frequency of survival versus

time in months for canine cutaneous MCT patients with and without identified

c-KIT mutations. The presence of duplication mutation in the c-KIT proto-

oncogene was significantly associated with a decreased survival duration

[P = .0068, HR = 6.23 (1.66–23.40)].
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protein localization were investigated. No significant relation-

ships were identified (data not shown).

Discussion

The goal of this study was to look at the c-KIT proto-

oncogene and its product KIT at both the gene and protein

levels to better define the role this gene plays in the patho-

genesis of canine cutaneous MCTs. This is the first study

to demonstrate a significant association between c-KIT ITD

mutations, and an increased rate of recurrent disease and

mortality in dogs with canine cutaneous MCTs. Additionally,

this is the first study to identify a significant relationship be-

tween the presence of ITD c-KIT mutations and the aberrant

localization of KIT in canine MCTs. These data document

the importance of the c-KIT proto-oncogene in the tumori-

genesis of canine cutaneous MCTs and clearly identify the

c-KIT proto-oncogene as a potential target for the treatment

of canine MCTs.

The c-KIT proto-oncogene was first implicated in the

progression of canine cutaneous MCTs when activating

mutations were identified in the juxtamembrane domain of

c-KIT [31,32]. Following the identification of c-KIT mutations

in canine MCTs, work by our laboratory has shown that the

presence of c-KIT mutations is significantly associated with

higher histologic grade MCTs [33]. The results of this paper

further demonstrate the association of c-KIT mutations with

higher histologic grade MCTs in dogs. All of the MCTs with

c-KIT mutations identified in this study were of histologic

grades 2 and 3, whereas no grade 1 MCTs were found to

have c-KIT mutations. In this paper, we have further defined

the significance of ITD c-KIT mutations in canine MCTs by

showing that c-KIT ITDmutations are significantly associated

with an increased incidence of MCT-related death and with

an increased occurrence of MCTs at the original or distant

cutaneous or extracutaneous locations.

The prognostic value and biologic significance of molecu-

lar markers can be confounded by variations in the treatment

protocols used in a given study population. To overcome this

source of bias, only cases that were treated with surgical

excision alone (i.e., no chemotherapy or radiation therapy)

were included in this study. This is the only study that has

looked at the significance of c-KIT mutations in a population

of dogs treated with a single therapeutic protocol.

In this study, ITD c-KIT mutations were found in 15% of

the MCTs that were examined. The incidence of ITD c-KIT

mutations varied from 9% to 33% in the two previous studies,

which consisted of randomly selected and referral high-

grade tumors, respectively [33,53]. The predominance of

intermediate- and high-grade tumors in the latter study [53]

is likely to account for the high incidence of c-KIT mutations

in their study population. In the current study, cases were

randomly selected and represented the entire spectrum of

canine cutaneous MCTs [47,48,51]. Based on the results of

this study and previous studies, the true incidence of ITD

c-KIT is likely to be between 9% and 15% in all MCTs. How-

ever, these mutations may occur in as many as 50% of high-

grade canine MCTs [33,53].

Previously, our laboratory has shown that increased

cytoplasmic KIT protein localization in neoplastic mast cells

is associated with both a decreased disease-free survival

and an overall survival of dogs with cutaneous MCTs [39]. In

this study, we identified a significant association between

the presence of ITD c-KIT mutations and changes in KIT

localization in canine cutaneous MCTs. Seven of nine MCTs

with c-KIT mutations had aberrant KIT protein localization.

Although the significance of this relationship is not currently

clear, this may suggest that ITD c-KIT mutations may be

responsible for aberrant KIT localization in a subset of ca-

nine MCTs. Two cases with c-KIT mutations did not have

aberrant KIT localization and remain as outliers to this hy-

pothesis. However, the mutation in one of these MCTs was

located within intron 11 only, and therefore could be spliced

out during mRNA processing and may not be biologically

significant (case 9). It is also important to note that the dog

with the intronic c-KIT mutation (case 9) was still alive with

no report of local or distant recurrence at 20 months post-

surgery. Furthermore, significant statistical relationships

Figure 5. Correlation between ITD c-KITmutations and KIT protein localization in canine MCTs. A significant association was found between the presence of c-KIT

mutations and the cellular localization of KIT in canine MCTs (P = .046). Seven of nine (77.8%) MCTs with ITD c-KIT mutations had aberrant KIT localization in

neoplastic MCTs.
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between ITD c-KIT mutations and both the incidence of (P =

.0052) and time until MCT-related deaths (P = .0267) are

preserved when this mutation is not considered as a biolog-

ically significant mutation. A potential explanation for the

absence of cytoplasmic KIT localization in the other MCT

that had an ITD c-KIT mutation may be that this tumor only

recently acquired the mutation, and the changes in KIT

localization may not have occurred yet at the time of surgical

excision. However, ITD c-KIT mutations and changes in KIT

localization may represent separate events that occur inde-

pendent of one another in the progression of canine cutane-

ous MCTs. This hypothesis is supported by the fact that

28 MCTs included in this study had aberrant KIT localization

without the presence of ITD c-KITmutations. However, these

data could also indicate that, in addition to a direct causal

relationship between the ITD mutations and aberrant KIT

localization, other factors may be responsible for aberrant

KIT localization in canine cutaneous MCTs without ITD c-KIT

mutations. The primers that were used in this study do not

allow for the detection of the previously reported deletions

in canine MCTs because the forward primer is located in

the region of c-KIT that has been reported to be deleted in

a small subset of canine MCTs [32,33]. Therefore, although

rare, other c-KIT mutations, such as deletions in the juxta-

membrane domain, may be responsible for the aberrant

protein localization in those cases in which we did not identify

ITD c-KITmutations. In summary, the correlation between ITD

c-KIT mutations and aberrant KIT localization leads to many

interesting questions regarding the functional significance of

this relationship and the overall functional significance of

aberrantly localized KIT when ITD c-KIT mutations are not

present. Current work in our laboratory is focused on the

further characterization of aberrantly localized KIT and on

functional studies to better elucidate the relationship between

ITD c-KIT mutations and the aberrant localization of KIT.

No significant relationship was found in this study between

the presence of ITD c-KIT mutations or the aberrant locali-

zation of KITand the level of KIT protein expression as mea-

sured by mean immunofluorescence in a tissue microarray.

These results suggest that constitutive activation of KIT due

to ITD mutations or changes in signaling pathways through

aberrant KIT localization may be more important in the

pathogenesis of canine MCTs than overexpression of KIT

and subsequent increases in receptor sensitivity to its li-

gand. To clarify these observations, these results need to

be verified using additional techniques to quantify KIT protein

levels in canine MCTs. Additionally, further studies need to

be conducted to elucidate the functional significance of

aberrantly localized KIT and the effects it has on signaling in

neoplastic mast cells.

Spontaneous neoplastic diseases are commonly seen in

dogs [43,45] and, in many cases, share morphologic, clinical,

and molecular characteristics similar to those of human

neoplastic diseases. Therefore, these tumors are an excel-

lent in vivo model of spontaneous neoplasia that may be

utilized to better understand the roles of various genes and

proteins in the progression of neoplastic diseases, and to

serve as model systems for testing the safety and efficacy of

novel therapeutic agents [57,58]. Canine cutaneous MCTs

are one of the most common neoplasms in dogs and, unlike

human mastocytomas, often have an aggressive behavior

that can result in death. Due to the high incidence of canine

MCTs and the central role that c-KIT plays in MCT tumori-

genesis, canine MCTs can serve as an excellent in vivo

model for studying its role in the progression of this and

other human and animal neoplastic diseases. We propose

canine MCTs as a spontaneous in vivo model for clinical

trials aimed at determining the safety and efficacy of novel

targeted chemotherapeutic agents involving c-KIT signal-

ing pathways.
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